Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.222
Filtrar
1.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474615

RESUMO

The valorization of byproducts from the sugarcane industry represents a potential alternative method with a low energy cost for the production of metabolites that are of commercial and industrial interest. The production of exopolysaccharides (EPSs) was carried out using the yeast Suhomyces kilbournensis isolated from agro-industrial sugarcane, and the products and byproducts of this agro-industrial sugarcane were used as carbon sources for their recovery. The effect of pH, temperature, and carbon and nitrogen sources and their concentration in EPS production by submerged fermentation (SmF) was studied in 170 mL glass containers of uniform geometry at 30 °C with an initial pH of 6.5. The resulting EPSs were characterized with Fourier-transform infrared spectroscopy (FT-IR). The results showed that the highest EPS production yields were 4.26 and 44.33 g/L after 6 h of fermentation using sucrose and molasses as carbon sources, respectively. Finally, an FT-IR analysis of the EPSs produced by S. kilbournensis corresponded to levan, corroborating its origin. It is important to mention that this is the first work that reports the production of levan using this yeast. This is relevant because, currently, most studies are focused on the use of recombinant and genetically modified microorganisms; in this scenario, Suhomyces kilbournensis is a native yeast isolated from the sugar production process, giving it a great advantage in the incorporation of carbon sources into their metabolic processes in order to produce levan sucrose, which uses fructose to polymerize levan.


Assuntos
Saccharomycetales , Saccharum , Fermentação , Saccharum/metabolismo , Melaço/análise , Carbono , Espectroscopia de Infravermelho com Transformada de Fourier , Saccharomyces cerevisiae/metabolismo , Frutanos/química , Sacarose/metabolismo
2.
Sci Rep ; 14(1): 5563, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448501

RESUMO

Byproducts from the sugarcane manufacturing process, specifically sugarcane molasses (SM) and sugarcane bagasse (SB), can be used as alternative raw materials for sorbitol production via the biological fermentation process. This study investigated the production of sorbitol from SM and sugarcane bagasse hydrolysate (SBH) using a thermally adapted Zymomonas mobilis ZM AD41. Various combinations of SM and SBH on sorbitol production using batch fermentation process were tested. The results revealed that SM alone (FM1) or a mixture of SM and SBH at a ratio of 3:1 (FM2) based on the sugar mass in the raw material proved to be the best condition for sorbitol production by ZM AD41 at 37 °C. Further optimization conditions for sorbitol production revealed that a sugar concentration of 200 g/L and a CaCl2 concentration of 5.0 g/L yielded the highest sorbitol content. The maximum sorbitol concentrations produced by ZM AD41 in the fermentation medium containing SM (FM1) or a mixture of SM and SBH (FM2) were 31.23 and 30.45 g/L, respectively, comparable to those reported in the literature using sucrose or a mixture of sucrose and maltose as feedstock. These results suggested that SBH could be used as an alternative feedstock to supplement or blend with SM for sustainable sorbitol production. In addition, the fermentation conditions established in this study could also be applied to large-scale sorbitol production. Moreover, the thermally adapted Z. mobilis ZM AD41 is also a promising sorbitol-producing bacterium for large-scale production at a relatively high fermentation temperature using agricultural byproducts, specifically SM and SB, as feedstock, which could reduce the operating cost due to minimizing the energy required for the cooling system.


Assuntos
Saccharum , Zymomonas , Celulose , Sorbitol , Melaço , Maltose , Sacarose
3.
Int J Biol Macromol ; 264(Pt 1): 130536, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432273

RESUMO

Tremella fuciformis polysaccharide (TFPS) is a natural mushroom mucopolysaccharide widely used in health foods, medical care, cosmetic and surgical materials. In this study, we developed an efficient strategy for the repeated batch production of highly bioactive TFPS from the agro-industrial residue cane molasses. Cane molasses contained 39.92 % sucrose (w/w), 6.36 % fructose and 3.53 % glucose, all of which could be utilized by T. fuciformis spores, whereas, the TFPS production efficiency only reached 0.74 g/L/d. Corn cobs proved to be the best immobilized carrier that could tightly absorb spores and significantly shorten the fermentation lag period. The average yield of TFPS in eight repeated batch culture was 5.52 g/L with a production efficiency of 2.04 g/L/d. The average fermentation cycle after optimization was reduced by 61.61 % compared with the initial conditions. Compared to glucose as a carbon source, cane molasses significantly increased the proportion of low-molecular-weight TFPS (TFPS-2) in total polysaccharides from 3.54 % to 17.25 % (w/w). Moreover, TFPS-2 exhibited potent antioxidant capacity against four free radicals (O2-, ABTS+, OH, and DPPH). In conclusion, this study lays the foundation for the efficient conversion of cane molasses and production of TFPS with high bioactivity.


Assuntos
Basidiomycota , Técnicas de Cultura Celular por Lotes , Melaço , Bengala , Polissacarídeos/farmacologia , Polissacarídeos/química , Fermentação , Glucose
4.
Genomics ; 116(2): 110811, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387766

RESUMO

Sugarcane molasses is one of the main raw materials for bioethanol production, and Saccharomyces cerevisiae is the major biofuel-producing organism. In this study, a batch fermentation model has been used to examine ethanol titers of deletion mutants for all yeast nonessential genes in this yeast genome. A total of 42 genes are identified to be involved in ethanol production during fermentation of sugarcane molasses. Deletion mutants of seventeen genes show increased ethanol titers, while deletion mutants for twenty-five genes exhibit reduced ethanol titers. Two MAP kinases Hog1 and Kss1 controlling the high osmolarity and glycerol (HOG) signaling and the filamentous growth, respectively, are negatively involved in the regulation of ethanol production. In addition, twelve genes involved in amino acid metabolism are crucial for ethanol production during fermentation. Our findings provide novel targets and strategies for genetically engineering industrial yeast strains to improve ethanol titer during fermentation of sugarcane molasses.


Assuntos
Saccharomycetales , Saccharum , Fermentação , Etanol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharum/genética , Saccharum/metabolismo , Saccharomycetales/metabolismo , Sistema de Sinalização das MAP Quinases , Melaço , Aminoácidos
5.
Sci Total Environ ; 919: 170770, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340823

RESUMO

Antibiotic resistance genes (ARGs) may be synergistic selected during bio-treatment of chromium-containing wastewater and causing environmental risks through horizontal transfer. This research explored the impact of self-screening bacterium Acinetobacter sp. SL-1 on the treatment of chromium-containing wastewater under varying environmental conditions. The findings indicated that the optimal Cr(VI) removal conditions were an anaerobic environment, 30 °C temperature, 5 g/L waste molasses, 100 mg/L Cr(VI), pH = 7, and a reaction time of 168 h. Under these conditions, the removal of Cr(VI) reached 99.10 %, however, it also developed cross-resistance to tetracycline, gentamicin, clarithromycin, ofloxacin following exposure to Cr(VI). When decrease Cr(VI) concentration to 50 mg/L at pH of 9 with waste molasses as carbon source, the expression of ARGs was down regulated, which decreased the horizontal transfer possibility of ARGs and minimized the potential environmental pollution risk caused by ARGs. The study ultimately emphasized that the treatment of chromium-containing wastewater with waste molasses in conjunction with SL-1 not only effectively eliminates hexavalent chromium but also mitigates the risk of environmental pollution.


Assuntos
Acinetobacter , Catecóis , Águas Residuárias , Antibacterianos/metabolismo , Melaço , Carbono/metabolismo , Acinetobacter/metabolismo , Cromo/metabolismo , Resistência Microbiana a Medicamentos , Biodegradação Ambiental
6.
Bioresour Technol ; 395: 130370, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266787

RESUMO

Molasses is a by-product from sugarcane processing industries that contains some useful natural compounds. This paper proposes a method to produce sucralose, a non-caloric sweetener, from sugarcane molasses. In the first step, sugarcane molasses was converted to dried molasses powder using the low-temperature spray drying process in order to preserve natural compounds. Response surface methodology and artificial neural network were used to determine the experimental condition for maximal bioactive compounds content and antioxidant activity. Dried molasses powder could be produced with maximal values of sucrose yield, total phenolic content, total flavonoid content and antioxidant activity. In the final step, sucralose was derived from dried molasses powder. The yield of molasses-derived sucralose obtained from the proposed method was 0.628±0.01 g/g dried molasses powder with the purity of 99.95±0.02 %. The proposed method paves the way to convert sugarcane molasses to a non-caloric sweetener for applications in food and pharmaceutical industries.


Assuntos
Melaço , Saccharum , Antioxidantes , Edulcorantes , Pós , Indústria Farmacêutica
7.
Environ Pollut ; 344: 123337, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266698

RESUMO

The in situ biosequestration of Cr(VI) in groundwater with molasses as the carbon source was studied based on column experiments and model simulation in this study. Compared with biological reduction, molasses-based chemical reduction did not cause significant Cr(VI) removal at molasses concentration as high as 1.14 g L-1. The molasses at a concentration as low as 0.57 g L-1 could support biofilm-based Cr(VI) sequestration under flow conditions and showed better sequestration performances than D-glucose and emulsified vegetable oil (8 g L-1). The existence of molasses (1.14 g L-1) decreased the pH of the effluent from 7.5 to 6.3 and the oxidation-reduction potential from 275 mV to 220 mV in the groundwater, which was responsible for reduction and thus the sequestration of Cr(VI). Advection-dispersion-reaction model well described the process of the Cr(VI) transport with biosequestration in the column (R2 ≥ 0.96). Owing to the Cr(VI) toxicity to the biofilms, the removal ratio decreased by 24% with a rise of Cr(VI) concentration from 8.6 to 43 mg L-1. The prolongation of hydraulic retention time could promote the performance of Cr(VI) biosequestration. The chemical form of Cr deposited as the product of bio-reduction was confirmed as Cr(OH)3·H2O and other complexes of Cr(III). Our work demonstrated the efficacy of molasses for in situ sequestration of Cr(VI) under the dynamic flow condition and provide some useful information for Cr-contaminated groundwater remediation.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Melaço , Água Subterrânea/química , Cromo/química , Carbono
8.
Biotechnol Bioeng ; 121(4): 1314-1324, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38178588

RESUMO

The integration of first- (1G) and second-generation (2G) ethanol production by adding sugarcane juice or molasses to lignocellulosic hydrolysates offers the possibility to overcome the problem of inhibitors (acetic acid, furfural, hydroxymethylfurfural and phenolic compounds), and add nutrients (such as salts, sugars and nitrogen sources) to the fermentation medium, allowing the production of higher ethanol titers. In this work, an 1G2G production process was developed with hemicellulosic hydrolysate (HH) from a diluted sulfuric acid pretreatment of sugarcane bagasse and sugarcane molasses. The industrial Saccharomyces cerevisiae CAT-1 was genetically modified for xylose consumption and used for co-fermentation of sucrose, fructose, glucose, and xylose. The fed-batch fermentation with high cell density that mimics an industrial fermentation was performed at bench scale fermenter, achieved high volumetric ethanol productivity of 1.59 g L-1 h-1, 0.39 g g-1 of ethanol yield, and 44.5 g L-1 ethanol titer, and shown that the yeast was able to consume all the sugars present in must simultaneously. With the results, it was possible to establish a mass balance for the global process: from pretreatment to the co-fermentation of molasses and HH, and it was possible to establish an effective integrated process (1G2G) with sugarcane molasses and HH co-fermentation employing a recombinant yeast.


Assuntos
Celulose , Polissacarídeos , Saccharum , Celulose/metabolismo , Fermentação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose , Melaço , Saccharum/metabolismo , Açúcares , Etanol
9.
Bioresour Technol ; 393: 130101, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013036

RESUMO

Ergothioneine (EGT) is a high-value natural antioxidant that cannot be synthesized by the human body. This study showed that Rhodotorula mucilaginosa DL-X01 can use untreated molasses and fish bone meal enzymatic hydrolysate as the substrates to synthesize EGT. By optimizing the growth conditions, the EGT yield reached 29.39 mg/L when molasses and fish bone meal (FBM) were added at 60 g/L and 400 g/L respectively. Finally, the EGT yield was increased to 216.25 mg/L by fed-batch fermentation in a 5 L bioreactor. Compared with the fermentation by yeast extract peptone dextrose medium, the feedstock cost of EGT production was reduced by 330.91 % by using molasses and FBM as substrates. These results showed that R. mucilaginosa DL-X01 can produce high-value EGT using two cheap processing by-products, molasses and FBM, which is of great significance for environmental protection and sustainable development.


Assuntos
Ergotioneína , Minerais , Rhodotorula , Animais , Humanos , Melaço , Análise Custo-Benefício , Fermentação , Produtos Biológicos
10.
Environ Res ; 242: 117709, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37993049

RESUMO

The biological denitrification of high-nitrate wastewater (HNW) is primarily hindered by insufficient carbon sources and excessive nitrite accumulation. In this study, micromagnetic carriers with varying micromagnetic field (MMF) strengths (0.0, 0.3, 0.6, 0.9 mT) were employed to enhance the denitrification of HNW using waste molasses (WMs) as a carbon source. The results revealed that 0.6 mT MMF significantly improved the total nitrogen removal (TN) efficiency at 96.3%. A high nitrate (NO3--N) removal efficiency at 99.3% with a low nitrite (NO2--N) accumulation at 25.5 mg/L was achieved at 0.6 mT MMF. The application of MMF facilitated the synthesis of adenosine triphosphate (ATP) and stimulated denitrifying enzymes (e.g., nitrate reductase (NAR), nitrite reductase (NIR), and nitric oxide reductase (NOR)), which thereby promoting denitrification. Moreover, the effluent chemical oxygen demand (COD), tryptophan and fulvic-like substances exhibited their lowest levels at 0.6 mT MMF. Analysis through 16S ribosomal ribonucleic acid gene sequencing indicated a significant enrichment of denitrifying bacteria including Castellaniella Klebsiella under the influence of MMF. Besides, the proliferation of Acholeplasma, Klebsiella and Proteiniphilum at 0.6 mT MMF promoted the hydrolysis and acidification of WMs. This study offers new insights into the enhanced utilization of WMs and the denitrification of HNW through the application of MMF.


Assuntos
Nitratos , Águas Residuárias , Nitritos , Desnitrificação , Elétrons , Melaço , Reatores Biológicos/microbiologia , Carbono , Nitrogênio
11.
Mol Omics ; 20(1): 19-26, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37691617

RESUMO

Lactic acid is a versatile, multi-functional organic monomer in various industries, creating worldwide demand. High titer lactic acid production was achieved by novel Bacillus amyloliquefaciens J2V2AA through sugarcane molasses fermentation up to 178 mg mL-1. A metabolomics approach such as combined GC-MS and LC-MS was applied to elucidate the involvement of key metabolites in lactic acid production. The results revealed the participation of 58 known intra-cellular metabolites at various pathways in lactic acid production. Twenty-eight highly up-regulated and down-regulated metabolites were analyzed, and a schematic diagram of a possible lactic acid production pathway was proposed. The produced lactic acid was analyzed through FTIR, UV-Spectrum, and HPLC analysis.


Assuntos
Bacillus amyloliquefaciens , Saccharum , Bacillus amyloliquefaciens/metabolismo , Saccharum/metabolismo , Ácido Láctico/metabolismo , Melaço , Fermentação
12.
J Environ Manage ; 350: 119627, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38000276

RESUMO

Single-cell protein (SCP) is a vital supplement for animal protein feed. This study utilized biogas slurry and sugarcane molasses to ferment Nectaromyces rattus for the production of SCP. The optimal batch fermentation conditions were obtained in a 5L jar with a tank pressure of 0.1 MPa, an initial speed of 300 rpm, and an inoculum volume of 30%. The highest cell dry weight concentrations of the fed-batch fermentation without reflux and the fed-batch fermentation with reflux were 46.33 g/L and 29.71 g/L, respectively. The nitrogen conversion rates (47.05% and 44.12%) and the cell yields of total organic carbon (1 g/g and 1.17 g/g) of both fermentation modes were compared. The SCP contained 42.32% amino acids. Its high concentrations of potassium (19859.96 mg/kg) and phosphorus (7310.44 mg/kg) present a novel approach for the extraction of these essential nutrients from biogas slurry. The enrichment of K was related to the H+ efflux and sugar transport.


Assuntos
Biocombustíveis , Melaço , Potássio , Fermentação
13.
Microb Cell Fact ; 22(1): 202, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803422

RESUMO

BACKGROUND: The application of exopolysaccharide-producing bacteria (EPS) in dual chamber microbial fuel cells (DCMFC) is critical which can minimize the chemical oxygen demand (COD) of molasses with bioelectricity production. Hence, our study aimed to evaluate the EPS production by the novel strain Bacillus piscis by using molasses waste. Therefore, statistical modeling was used to optimize the EPS production. Its structure was characterized by UV, FTIR, NMR, and monosaccharides compositions. Eventually, to highlight B. piscis' adaptability in energy applications, bioelectricity production by this organism was studied in the BCMFC fed by an optimized molasses medium. RESULTS: B. piscis OK324045 characterized by 16S rRNA is a potent EPS-forming organism and yielded a 6.42-fold increase upon supplementation of molasses (5%), MgSO4 (0.05%), and inoculum size (4%). The novel exopolysaccharide produced by Bacillus sp. (EPS-BP5M) was confirmed by the structural analysis. The findings indicated that the MFC's maximum close circuit voltage (CCV) was 265 mV. The strain enhanced the performance of DCMFC achieving maximum power density (PD) of 31.98 mW m-2, COD removal rate of 90.91%, and color removal of 27.68%. Furthermore, cyclic voltammetry (CV) revealed that anodic biofilms may directly transfer electrons to anodes without the use of external redox mediators. Additionally, CV measurements made at various sweep scan rates to evaluate the kinetic studies showed that the electron charge transfer was irreversible. The SEM images showed the biofilm growth distributed over the electrode's surface. CONCLUSIONS: This study offers a novel B. piscis strain for EPS-BP5M production, COD removal, decolorization, and electricity generation of the optimized molasses medium in MFCs. The biosynthesis of EPS-BP5M by a Bacillus piscis strain and its electrochemical activity has never been documented before. The approach adopted will provide significant benefits to sugar industries by generating bioelectricity using molasses as fuel and providing a viable way to improve molasses wastewater treatment.


Assuntos
Bacillus , Fontes de Energia Bioelétrica , Melaço , Cinética , RNA Ribossômico 16S , Eletricidade , Eletrodos
14.
Molecules ; 28(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37836653

RESUMO

Among the family of sugarcane spirits, those made from juice are diverse and often produced in a traditional way. They must be distinguished from other sugarcane spirits, which are more widely produced and made from other sugarcane derivatives, such as molasses. These alcoholic beverages contribute significantly to the socio-economic development of many countries. However, despite ancestral know-how, there is a lack of contemporary data required to characterize some sugarcane juice spirits (SCJSs) and to overcome the current and future threats that producers will have to face. While preserving their authenticity and specificity, SCJS producers expect to improve and ensure sufficient yield and a superior quality product. Even if the scientific knowledge on these spirits is not comparable, the available data could help identify the critical points to be improved in the making process. This review aims to present the main SCJSs encountered worldwide, defining their specific features through some important aspects with, notably, references to the complex notion of terroir. To continue, we discuss the main steps of the SCJS process from harvesting to aging. Finally, we expose an inventory of SCJS's chemical compositions and of their sensory description that define the specific organoleptic properties of these spirits.


Assuntos
Saccharum , Saccharum/química , Bebidas Alcoólicas/análise , Melaço
15.
Molecules ; 28(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687063

RESUMO

As a biodegradable and renewable material, polylactic acid is considered a major environmentally friendly alternative to petrochemical plastics. Microbial fermentation is the traditional method for lactic acid production, but it is still too expensive to compete with the petrochemical industry. Agro-industrial wastes are generated from the food and agricultural industries and agricultural practices. The utilization of agro-industrial wastes is an important way to reduce costs, save energy and achieve sustainable development. The present study aimed to develop a method for the valorization of Zizania latifolia waste and cane molasses as carbon sources for L-lactic acid fermentation using Rhizopus oryzae LA-UN-1. The results showed that xylose derived from the acid hydrolysis of Z. latifolia waste was beneficial for cell growth, while glucose from the acid hydrolysis of Z. latifolia waste and mixed sugars (glucose and fructose) from the acid hydrolysis of cane molasses were suitable for the accumulation of lactic acid. Thus, a three-stage carbon source utilization strategy was developed, which markedly improved lactic acid production and productivity, respectively reaching 129.47 g/L and 1.51 g/L·h after 86 h of fermentation. This work demonstrates that inexpensive Z. latifolia waste and cane molasses can be suitable carbon sources for lactic acid production, offering an efficient utilization strategy for agro-industrial wastes.


Assuntos
Melaço , Rhizopus oryzae , Bengala , Resíduos Industriais , Ácido Láctico , Carbono , Glucose
16.
BMC Vet Res ; 19(1): 149, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684611

RESUMO

BACKGROUND: The study aimed to investigate the effect of urea molasses mineral blocks (UMMB) on nutrient digestibility, productive performance and blood biochemical profile of indigenous yaks under various feeding systems. A total of sixteen yaks were randomly divided into four groups (n = 4 animal per group) and offered the, following feeding systems: (A) stall feeding, (B), urea molasses mineral block (UMMB) + stall feeding, (C) yard feeding and (D) UMMB + yard feeding. Trial lasted for 40 days. RESULTS: Results showed that nutrients intake (g) and nutrient digestibility (%) of dry matter (DM), organic matter (OM), crude protein (CP), ether extract (EE) and crude fiber (CF) were significantly higher (p < 0.05) in stall and yard feeding groups with UMMB licking. Blood zinc, cobalt, hemoglobin (Hb), red blood cell (RBC), glucose and serum glutamate private transaminase (SGPT) significantly (p < 0.05) increased in stall and yard feeding with UMMB licking. Milk yield, Ca and monounsaturated fatty acid except milk composition improved significantly (p < 0.05) in stall and yard feeding groups with UMMB licking. CONCLUSION: It was concluded that feeding of UMMB improved utilization of low-quality roughages and best results were obtained from stall and yard feedings with UMMB licking as compared to other groups.


Assuntos
Melaço , Ureia , Animais , Bovinos , Minerais , Nutrientes , Eritrócitos
17.
Trop Anim Health Prod ; 55(5): 298, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37723324

RESUMO

Dairy sector has recently focused a lot of attention on the addition of agricultural by-products as functional feed additives as an environmentally friendly and sustainable technology. Depotash vinasse (DPV) serves as a cheap source of nutrients and a binder for animal feed in dairy sector. However, there is little information available on the usage of depotash vinasse on animals. Therefore, the aim of the present study was to assess the role of depotash vinasse as pellet binder on nutrient digestibility, blood parameters and milk production in early lactating Murrah buffaloes. Fifteen Murrah buffaloes (daily milk yield 8.5 to 9.0 kg/day) were randomly assigned to three groups, viz., control, group 1 (G1) and group 2 (G2) on the basis of milk yield and days in milk. The control group animals received a basal diet of concentrate mix, oat greens and wheat straw, G1 animals received molasses as a binder (8%), while G2 received DPV as binder (8%). Results revealed that there was no significant effect on nutrient digestibility. Blood parameters and hepatic enzymes were statistically similar (P > 0.05). Supplementation of depotash vinasse as binder had no effect on plasma minerals and was comparable to control group. There were no changes in milk production and 6% fat-corrected milk yield in treated groups as compared to control. It was concluded that depotash vinasse (8%) may be used for pellet production with no negative impact on milk yield and composition, nutrient digestibility and blood biochemical parameters in early lactating buffaloes.


Assuntos
Bison , Búfalos , Animais , Feminino , Melaço , Lactação , Agricultura
18.
Molecules ; 28(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37764292

RESUMO

Microbial fermentation for the production of tetramethylpyrazine (TTMP) is considered to be the most promising method, and the development of a cheap fermentation substrate is of great importance for large-scale TTMP production. In this study, inexpensive by-products from the food industry, i.e., molasses and soybean meal (instead of glucose and tryptone), were used as substrates for TTMP fermentation. The pretreatment of soybean meal was explored in order to achieve a better fermentation effect. The contents of each component in the fermentation medium were optimized by central composite design (CCD). The optimum contents were as follows: 72.5 g/L of molasses, 37.4 g/L of diammonium hydrogen phosphate (DAP), 53.4 g/L of soybean meal, and 5 g/L of yeast powder. The software predicted a maximum TTMP yield of 1469.03 mg/L, and the actual TTMP yield was 1328.95 mg/L for the validation experiment in the optimum medium. Under the optimum conditions (72.5 g/L of molasses, 37.4 g/L of DAP, 53.4 g/L of soybean meal, and 5 g/L of yeast powder), the actual maximum TTMP yield (1328.95 mg/L) in this study was much higher than the TTMP yield (895.13 mg/L) under the conditions (150 g/L of molasses, 30 g/L of DAP, 30 g/L of tryptone, and 10 g/L of yeast powder) of our previous study published in Molecules. In this study, the TTMP yield improved by 48.46%, with decreased molasses (more than half), decreased yeast powder (half) and by-product soybean meal instead of tryptone compared to our previous study. In summary, the cheaper fermentation medium had a higher TTMP yield in this study, which improves the application potential of Bacillus sp. TTMP20.


Assuntos
Bacillus , Saccharomyces cerevisiae , Farinha , Melaço , Pós
19.
Bioresour Technol ; 387: 129697, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37598801

RESUMO

Waste molasses, the abundant byproducts of the sugar industry, is a cost-efficient carbon source for advanced denitrification. However, the efficiency of waste molasses-driven denitrification is limited by its complex carbon content, hindering its practical application. Weak magnetic field (WMF) is reported to enhance biological nitrogen removal, but its effects on molasses-driven denitrification remains unknown. This study investigated whether the WMF can enhance waste molasses-driven nitrogen removal and explore the underlying mechanisms. It was found that WMF significantly facilitated waste molasses-driven denitrification, with total nitrogen removal efficiency increased by 1.25 times (from 77% to 96%). WMF stimulated the nitrate reductase's activity by 7-18%, and the enhancement was improved as WMF intensified. Quantitative qPCR analysis indicated that the abundances of denitrifying enzymes increased under WMF, which was consistent with the proliferation of denitrifying bacteria Denitratisoma and Devosia. This study has demonstrated that WMF is promising for enhancing complex carbon-driven denitrification processes.


Assuntos
Desnitrificação , Purificação da Água , Melaço , Carbono , Campos Magnéticos , Nitrogênio
20.
Vet Med Sci ; 9(5): 2269-2277, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37595292

RESUMO

BACKGROUND: In Ethiopia, locally available feed resources are commendable in livestock production to make the sector sustainable and productive. OBJECTIVES: This on-farm evaluation was conducted to evaluate the effect of urea-molasses-treated highland bamboo (Yushania alpina) leaves (UMTHBL) in lactating crossbred dairy cows' nutrient utilization, body performance, milk yield and quality and economic performance. METHODS: On-farm feeding trial was conducted using 12 lactating cows with initial body weight (328.08 ± 0.98 kg), initial milk yield (3.14 ± 0.78 L) of uniform parity (2) and stage of lactation (early) using a Randomized Complete Block Design. Three dietary treatments, namely, 6 h grazing (control) + concentrate (T1), control + UMTHBL ad lib (T2), control + untreated BL adlib (T3) with three replications were used. Analysis of variance was employed for the feeding trial data analysis. RESULTS: The UMTHBL increased more dry matter and nutrients intake than untreated. A significant difference (p < 0.05) was recorded between UMTHBL feeding (T2) and T1 and T3 in terms of increased milk yield. The highest (6.26 L) and the lowest (3.27 L) mean milk yield per day were recorded for cows fed UMTHBL and the control group, respectively. Urea-molasses treatment improved the crude protein (CP) and reduced fibres content than untreated. Treatment effects were not-significant (p > 0.05) for milk compositions. Similar to milk yield, dairy cows in T2 consumed more CP which is also reflected in higher body weight and economic benefit. CONCLUSION: It can be concluded that employing treatment technology for highland bamboo leaves could support the crossbred dairy cows' production in smallholder farmers.


Assuntos
Lactação , Leite , Feminino , Gravidez , Bovinos , Animais , Fazendas , Etiópia , Melaço , Peso Corporal , Nutrientes , Folhas de Planta , Suplementos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...